
New reporting features in VFP 9.0 SP2

Martin Haluza, Visual FoxPro DevCon, Prague, 2007

Table of Contents

Introduction ... 1

Downloading and installing VFP 9.0 SP2 CTP ... 1

New features – design time ... 2

Dynamic style .. 2

Custom scripts ... 3

Advanced properties ... 4

Extending the builder U/I .. 6

New features – run time ... 7

FXListener class.. 7

Adding custom helper objects ... 8

New ReportListener base class properties .. 9

Introduction
This session describes new features in the reporting system in Visual FoxPro 9.0 SP2. VFP 9.0 brought

a significant extension to the reporting system by introducing XBase components cooperating with

the basic engine during design time (REPORTBUILDER.APP) and run time (REPORTOUTPUT.APP,

ReportListener class). The new features in SP2 focus on

 allowing users to extend the XBase components and define an interface mechanism between

the design time and run time components (ReportBuilder vs. ReportListener) by exposing the

report Memberdata structure in a standardized and easy to access way

 using this mechanism to implement most common extensions, such as Dynamic formatting

Downloading and installing VFP 9.0 SP2 Beta
This session is based on the SP2 beta version, which is available for download at

http://msdn.microsoft.com/vfoxpro together with the Sedna beta. The service pack can be applied

over VFP 9.0 or VFP 9.0 SP1. Should you have installed the SP2 CTP (Community technology preview)

before, make sure you uninstall it before installing the SP2 beta.

New features – design time

Dynamic style
There is a new tab in the Field and Rectangle Properties – “Dynamics”. It allows for adding multiple

logical “Condition expressions” and style “Property modifications” to each field and rectangle. These

conditions are evaluated, in a defined order,

during the report processing, before the

corresponding object renders. Once one of the

conditions evaluates to .T. the defined

modifications apply to the object.

The “Script…” button generates a FoxPro source

code script that will be used in the report

processing to perform the dynamic style

evaluation. This script is not stored anywhere

and is not intended to be modified, however, you

can copy the code and use it as a run-time

extension script (see the Custom scripts

paragraph below).

Note: There are not separate scripts for each condition – all conditions are handled by a single script

where each condition corresponds to a CASE clause in a DO CASE … ENDCASE statement. This means

two conditions will never be applied at the same time. If two conditions would evaluate as true only

the 1st one would be applied.

Following is the list of properties that can be modified:

 Field

o Text

o Font, font style

o Color

o Back style (opaque vs. transparent)

o Alpha

 Rectangle

o Width

o Height

The dynamic properties actually correspond to

parameters of EvaluateContents (for fields) and

AdjustObjectSize (for rectangles) ReportListener methods

in VFP 9.0 – so this in fact is a user interface to this

functionality that allows programmers and end users to define dynamic properties without need to

modify the report listener source code.

Example: Sales.prg, Sales2.frx, Sales3.frx – dynamic back style to highlight high and low number is a

sales summary report

Implementation details

The Dynamic style properties are stored in the object’s member data XML (STYLE column in the FRX)

as type “R” <reportdata> section named as “Microsoft.VFP.Reporting.Builder.EvaluateContents”. For

example, the dynamic style “RED” in the screenshot is stored as:

<reportdata name="Microsoft.VFP.Reporting.Builder.EvaluateContents"

type="R" script="" execute="red" execwhen="value < 1000" class=""

classlib="" declass="" declasslib="" penrgb="255" fillrgb="-1" pena="255"

filla="0" fname="Courier New" fsize="10" fstyle="0"/>

Custom scripts
The Run-time extensions box, in VFP 9.0 available in the Other tab of Label, Field, Line, Rectangle and

Picture/Ole Bound Properties, is now also available in the Band Properties and Report properties.

While this dialog window was already available in VFP 9.0, it served as some kind of a text/code place

holder available for programmers, without actually being looked at by the standard report listeners.

In SP2 the scripts follows a specific interface and is evaluated by the default report listener. The

extension window is no longer empty in SP2 – it contains a script skeleton with parameters

description and some tips how to create the scripts. The parameters of the script follow the

FXListener helper interface (see New features – run time paragraph below).

The “Execute when” field can contain one of the following values:

 An event name string (such as “RENDER”), case insensitive

 An expression evaluating to a logical value

 A “|” delimited list of event names (such as “RENDER|BEFOREREPORT”)

The scripts are conditionally executed on runtime by the new FXListener report listener (see New

features – run time below) if the “Execute when” expression evaluates to true (.T.) or the even name

matches.

The following table list object types and events available:

 LoadReport /
UnloadReport

BeforeReport
/ AfterReport

BeforeBand
/ AfterBand

Render EvaluateContents AdjustObjectSize

Report √ √

Band √

Label √

Field √ √

Line √

Rectangle √ √

Picture √ √

Implementation details

The custom script is stored in object’s member data <reportdata> section type “R” with an empty

name, “Execute when” field is stored in the execwhen attribute and actual script is stored in the

execute attribute.

Example: Sales.prg, Sales4.frx – dynamic back style to highlight high and low number is a sales

summary report

If the custom script modifies the field or rectangle properties in EvaluateContents or

AdjustObjectSize and a dynamic style applies at the same time, the dynamic style properties will take

precedence.

The run-time extensions dialog is not available in PROTECTED mode – it is intended to be used by

programmers while end users could “fine-tune” the styles using the Dynamics tab features.

“Draft” previewer mode
While most new report builder features in VFP 9.0 were supposed both by the “old” and “new”

reporting engine, the dynamic features in SP2, being implemented using report listeners, are

supported by the “new” engine only. If the report builder runs with SET REPORTBEHAVIOR to 80 and

you will try to previewer the report, you will get a message box informing about the dynamic

features being switched off.

Advanced properties
There is a new tab on report controls properties and report properties dialogs which contains a list of

“Advanced Properties”. Each property is identified by a unique name and can contain values of the

following types:

 Expression

 Text/XML

 String

 File

 Yes or No

The list is populated with the default properties for the given object type (see implementation

details below) and the user is allowed to modify the property values and add new properties.

 The default properties included in the product

include:

 HTML-specific properties for defining

hyperlinks and CSS styles

 General document properties – such as

document name, author, keywords, etc.

 ListenerRef.NoRenderWhen and

ListenerRef.Preprocess.NoRenderWhen –

conditional rendering – see HTMLSales

example below

The tab also contains an object rotation control

that allows for entering a rotation angle. These

properties are made available for the ReportListener object when the report is processed.

Example: Sales.prg, Sales4.frx – labels rotation

Example: HTMLSales.prg, SalesSummary.frx – the sample shows how to define hyperlinks (both

external and internal)

Example: HTMLSales.prg, HTMLSales.frx – performs a listener type conditional rendering

Example: Sales.prg, Sales5.frx – Decoration object triggered by an advanced property value –

“Field.Class”. The property value is an expression that defines the decoration object class.

Implementation details

The advanced properties are stored in object’s member data <reportdata> section with

“Microsoft.VFP.Reporting.Builder.AdvancedProperty” name, property name stored in the execwhen

attribute and value stored in the execute

attribute.

The rotation angle is stored in <reportdata>

section with

“Microsoft.VFP.Reporting.Builder.Rotate”

name, the rotation angle stored in the

execute attribute.

Default properties definition is stored in the

report builder configuration table as type “P”

records.

Extending the builder U/I
Another new feature in SP2 is the way to extend properties dialog boxes in the report builder –

custom pages can be added to all properties dialogs as well as the “Multiple Selection” dialog. Each

extension gets control when the dialog is about to show up (LoadFromFRX method) and when the

[OK] button is clicked (SaveToFRX method). The extension can modify columns in the FRX file or the

current control’s memberdata, which are supplied via “memberdata” cursor.

There is a very simple interface that the extensions must follow:

 The extension must be derived from a Page class

 The controls on the page are contained in a container object

 The container object may contain two methods: LoadFromFRX and SaveToFRX. If these

methods exist the builder will call them when appropriate.

The extensions are defined in the report builder configuration table as “T” type records. Event

column is set to 1 – Properties dialog, ObjType controls the dialog type:

 1 – Report/Global

 5 – Label

 6 – Line

 7 – Rectangle

 8 – Field

 17 – Picture/OLE Bound

 9 – Band

 10 – Grouped Objects

 99 – Multiple Selection

 55 – Any Report control or layout element

 Example: MyReportBuilder.dbf, MyRB.prg. MyReportBuilder.dbf, tabStretch class. A custom tab is

defined allowing “stretch” feature for labels and fields. The stretch controls are implemented both

for label and field control properties.

Example: MyReportBuilder.dbf, MyRB.prg. MyReportBuilder.dbf – a multi-select tabFieldClass tab

allows for setting the “Field.Class” property value to multiple objects.

New features – run time
All FFC ReportListener classes are now descendants of the FXListener class. The update listener has

been removed from the hierarchy as its functionality is now performed by FXListener itself with the

help of fxtherm class helper.

FXListener class
The FXListener class contains two member collections of helper objects that get invoked during the

report processing to perform extension tasks:

 FXS (helper objects that adjust the format and the content of the visual objects on the

reports) and

 GFXS (helper objects that adjust or replace GDI+ rendering).

Each helper object must implement the following interface:

DEFINE CLASS HelperObject as CUSTOM

Procedure ApplyFX

 LPARAMETER toListener, tcMethodToken, tp1, tp2, tp3, tp4, ;

tp5, tp6, tp7, tp8, tp9, tp10, tp11, tp12

ENDDEFINE

Whenever an event is fired the FXListener goes through all helper objects in the collection and call

their ApplyFX method, if appropriate, with the listener reference as the 1st parameter, event name as

the 2nd parameter and the event parameters as the following tp1..tp12 parameters.

The return value of the ApplyFX method is ignored for FX objects. For GFX objects the return value of

the Render method control how the default rendering will be performed:

Return value Behavior
OUTPUTFX_BASERENDER_RENDER_BEFORE_RESTORE The default rendering will be performed

and then the stored GDI+ graphics state will
be restored (for example, the helper object
could have changed the coordinates)

OUTPUTFX_BASERENDER_NORENDER The default rendering will be suppressed
OUTPUTFX_BASERENDER_AFTERRESTORE The stored GDI+ graphics will be restored

and then the default rendering will be
performed

(other values) The default rendering will be performed

The FXListener requires and automatically instantiates the following helper objects:

FXFeedback

Collection: FXS

Default location: fxTherm / _Reportlistener.vcx, stored in fxFeedbackClass, fxFeedbackClassLib and

fxFeedbackModule properties of the FXListener class

Purpose: provides a visual progress bar during the report execution

MemberDataScript

Collection: FXS

Default location: fxMemberDataScript / _Reportlistener.vcx, stored in fxMemberDataScriptClass,

fxMemberDataScriptClassLib and fxMemberDataScriptModule properties of the FXListener class

Purpose: evaluates the run-time extensions custom scripts

NoRender

Collection: GFXS

Default location: gfxNoRender / _Reportlistener.vcx, stored in gfxNoRenderClass,

gfxNoRenderClassLib and gfxNoRenderModule properties of the FXListener class

Purpose: Evaluates “ListenerRef.NoRenderWhen” and “ListenerRef.Preprocess.NoRenderWhen”

advanced properties to handle conditional rendering

Rotate

Collection: GFXS

Default location: gfxRotate / _Reportlistener.vcx, stored in gfxRotateClass, gfxRotateClassLib, and

gfxRotateModule properties of the FXListener class.

Purpose: Performs object rotation

Adding custom helper objects
Custom helper objects can be added using the FXListener’s AddCollectionMember method. The

method instantiates the object and add it to one of its member collections.

AddCollectionMember(tcClass, tcClassLib,tcModule,tlSingleton, tlInGFX, tlRequired)

tcClass

The object’s class name

tcClassLib

The location of object’s VCX library

tcModule

The object’s module

tlSingleton

If set to .F. repeated AddCollectionMember call will always be adding new instances of the specified

class. If set to .T. only one instance of the class will be added (repeated calls will be ignored)

tlInGFX

If set the .T. the object will be added to the GFXs collection otherwise it will be added to the FXs

collection

tlRequired

If set to .T. an error message box will be displayed if the object can’t be instantiated

Return values

OUTPUTFX_ADDCOLLECTION_SUCCESS – the object was successfully instantiated and added to the

collection

OUTPUTFX_ADDCOLLECTION_FAILURE – the object couldn’t have been instantiated

OUTPUTFX_ADDCOLLECTION_UNSUITABLE – the object was instantiated but it doesn’t implement

the ApplyFX method

Example: FXEvents.prg – a simple example of a helper class that print event names to the screen

Example: Stretch.prg – a helper object that performs the stretched rendering using the tabStretch

values from the “custom reportbuilder field properties tab” sample

New ReportListener base class properties

CallAdjustObjectSize, CallEvaluateContents

In VFP 9.0 the engine checks to see if there is any code in the AdjustObjectSize and

CallEvaluateContents event methods of the lead listener and calls these methods during the report

processing if it finds any. Listeners without dynamic behavior should have had these methods empty;

otherwise a significant performance penalty occurred. However, the performance penalty still

occurred for listeners allowing for dynamic behavior when no dynamic behavior actually took place.

In SP2, these two properties allow the listeners to indicate whether each of these events should be

triggered.

Value Result behavior

0 (default) The VFP 9.0 behavior – the events are triggered if any code exists in the methods

1 The event will not be triggered

2 The event will always be triggered, even if there is no code. This option is needed if
BindEvents is used for the event

Example: Sales.prg, Sales5.frx – decorator object instantiated by a helper object, controlled by an

advanced property. It “manually” switches on the EvaluateContents method call as FXListener would

not call it by default.

ReportListener.CommandClauses.File property

The ReportListener.CommandClauses.File property value is read-write in SP2. The native code will

read this property after LoadReport and use it as the FRX file location. This change enables users to

preprocess the FRX and save it as a private copy without changing the original FRX.

Example: NoRender helper object uses this property to create a temporary FRX with objects

removed as defined by the ListenerRef.Preprocess.NoRenderWhen advanced property.

	Introduction
	Downloading and installing VFP 9.0 SP2 Beta
	New features – design time
	Dynamic style
	Implementation details

	Custom scripts
	Implementation details

	“Draft” previewer mode
	Advanced properties
	Implementation details

	Extending the builder U/I

	New features – run time
	FXListener class
	FXFeedback
	MemberDataScript
	NoRender
	Rotate

	Adding custom helper objects
	New ReportListener base class properties
	CallAdjustObjectSize, CallEvaluateContents
	ReportListener.CommandClauses.File property

